461 lines
16 KiB
Python
461 lines
16 KiB
Python
from collections import defaultdict
|
|
from datetime import datetime, timedelta
|
|
import hashlib
|
|
import json
|
|
|
|
from dateutil.relativedelta import relativedelta
|
|
from django.core.cache import cache
|
|
from django.db.models import Min, Count
|
|
from django.db.models.functions import TruncDate
|
|
from django.http import StreamingHttpResponse
|
|
from django.utils import timezone
|
|
from openai import OpenAI
|
|
|
|
from utils.api import APIView
|
|
from utils.shortcuts import get_env
|
|
|
|
from account.models import User
|
|
from problem.models import Problem
|
|
from submission.models import Submission, JudgeStatus
|
|
from account.decorators import login_required
|
|
from ai.models import AIAnalysis
|
|
|
|
|
|
CACHE_TIMEOUT = 300
|
|
DIFFICULTY_MAP = {"Low": "简单", "Mid": "中等", "High": "困难"}
|
|
DEFAULT_CLASS_SIZE = 45
|
|
GRADE_THRESHOLDS = [(20, "S"), (50, "A"), (85, "B")]
|
|
|
|
|
|
def get_cache_key(prefix, *args):
|
|
return hashlib.md5(f"{prefix}:{'_'.join(map(str, args))}".encode()).hexdigest()
|
|
|
|
|
|
def get_difficulty(difficulty):
|
|
return DIFFICULTY_MAP.get(difficulty, "中等")
|
|
|
|
|
|
def get_grade(rank, submission_count):
|
|
if not rank or rank <= 0 or submission_count <= 0:
|
|
return "C"
|
|
if submission_count < DEFAULT_CLASS_SIZE // 3:
|
|
return "S"
|
|
|
|
top_percent = round(rank / submission_count * 100)
|
|
for threshold, grade in GRADE_THRESHOLDS:
|
|
if top_percent < threshold:
|
|
return grade
|
|
return "C"
|
|
|
|
|
|
def get_class_user_ids(user):
|
|
if not user.class_name:
|
|
return []
|
|
|
|
cache_key = get_cache_key("class_users", user.class_name)
|
|
user_ids = cache.get(cache_key)
|
|
if user_ids is None:
|
|
user_ids = list(
|
|
User.objects.filter(class_name=user.class_name).values_list("id", flat=True)
|
|
)
|
|
cache.set(cache_key, user_ids, CACHE_TIMEOUT)
|
|
return user_ids
|
|
|
|
|
|
def get_user_first_ac_submissions(
|
|
user_id, start, end, class_user_ids=None, use_class_scope=False
|
|
):
|
|
base_qs = Submission.objects.filter(
|
|
result=JudgeStatus.ACCEPTED, create_time__gte=start, create_time__lte=end
|
|
)
|
|
if use_class_scope and class_user_ids:
|
|
base_qs = base_qs.filter(user_id__in=class_user_ids)
|
|
|
|
user_first_ac = list(
|
|
base_qs.filter(user_id=user_id)
|
|
.values("problem_id")
|
|
.annotate(first_ac_time=Min("create_time"))
|
|
)
|
|
if not user_first_ac:
|
|
return [], {}, []
|
|
|
|
problem_ids = [item["problem_id"] for item in user_first_ac]
|
|
ranked_first_ac = list(
|
|
base_qs.filter(problem_id__in=problem_ids)
|
|
.values("user_id", "problem_id")
|
|
.annotate(first_ac_time=Min("create_time"))
|
|
)
|
|
|
|
by_problem = defaultdict(list)
|
|
for item in ranked_first_ac:
|
|
by_problem[item["problem_id"]].append(item)
|
|
for submissions in by_problem.values():
|
|
submissions.sort(key=lambda x: (x["first_ac_time"], x["user_id"]))
|
|
|
|
return user_first_ac, by_problem, problem_ids
|
|
|
|
|
|
class AIDetailDataAPI(APIView):
|
|
@login_required
|
|
def get(self, request):
|
|
start = request.GET.get("start")
|
|
end = request.GET.get("end")
|
|
|
|
user = request.user
|
|
|
|
cache_key = get_cache_key(
|
|
"ai_detail", user.id, user.class_name or "", start, end
|
|
)
|
|
cached_result = cache.get(cache_key)
|
|
if cached_result:
|
|
return self.success(cached_result)
|
|
|
|
class_user_ids = get_class_user_ids(user)
|
|
use_class_scope = bool(user.class_name) and len(class_user_ids) > 1
|
|
user_first_ac, by_problem, problem_ids = get_user_first_ac_submissions(
|
|
user.id, start, end, class_user_ids, use_class_scope
|
|
)
|
|
|
|
result = {
|
|
"user": user.username,
|
|
"class_name": user.class_name,
|
|
"start": start,
|
|
"end": end,
|
|
"solved": [],
|
|
"grade": "",
|
|
"tags": {},
|
|
"difficulty": {},
|
|
"contest_count": 0,
|
|
}
|
|
|
|
if user_first_ac:
|
|
problems = {
|
|
p.id: p
|
|
for p in Problem.objects.filter(id__in=problem_ids)
|
|
.select_related("contest")
|
|
.prefetch_related("tags")
|
|
}
|
|
solved, contest_ids = self._build_solved_records(
|
|
user_first_ac, by_problem, problems, user.id
|
|
)
|
|
result.update(
|
|
{
|
|
"solved": solved,
|
|
"grade": self._calculate_average_grade(solved),
|
|
"tags": self._calculate_top_tags(problems.values()),
|
|
"difficulty": self._calculate_difficulty_distribution(
|
|
problems.values()
|
|
),
|
|
"contest_count": len(set(contest_ids)),
|
|
}
|
|
)
|
|
|
|
cache.set(cache_key, result, CACHE_TIMEOUT)
|
|
return self.success(result)
|
|
|
|
def _build_solved_records(self, user_first_ac, by_problem, problems, user_id):
|
|
solved, contest_ids = [], []
|
|
for item in user_first_ac:
|
|
pid = item["problem_id"]
|
|
problem = problems.get(pid)
|
|
if not problem:
|
|
continue
|
|
|
|
ranking_list = by_problem.get(pid, [])
|
|
rank = next(
|
|
(
|
|
idx + 1
|
|
for idx, rec in enumerate(ranking_list)
|
|
if rec["user_id"] == user_id
|
|
),
|
|
None,
|
|
)
|
|
|
|
if problem.contest_id:
|
|
contest_ids.append(problem.contest_id)
|
|
|
|
solved.append(
|
|
{
|
|
"problem": {
|
|
"display_id": problem._id,
|
|
"title": problem.title,
|
|
"contest_id": problem.contest_id,
|
|
"contest_title": getattr(problem.contest, "title", ""),
|
|
},
|
|
"ac_time": timezone.localtime(item["first_ac_time"]).isoformat(),
|
|
"rank": rank,
|
|
"ac_count": len(ranking_list),
|
|
"grade": get_grade(rank, len(ranking_list)),
|
|
}
|
|
)
|
|
|
|
return sorted(solved, key=lambda x: x["ac_time"]), contest_ids
|
|
|
|
def _calculate_average_grade(self, solved):
|
|
if not solved:
|
|
return ""
|
|
grade_count = defaultdict(int)
|
|
for s in solved:
|
|
grade_count[s["grade"]] += 1
|
|
return max(grade_count, key=grade_count.get)
|
|
|
|
def _calculate_top_tags(self, problems):
|
|
tags_counter = defaultdict(int)
|
|
for problem in problems:
|
|
for tag in problem.tags.all():
|
|
if tag.name:
|
|
tags_counter[tag.name] += 1
|
|
return dict(sorted(tags_counter.items(), key=lambda x: x[1], reverse=True)[:5])
|
|
|
|
def _calculate_difficulty_distribution(self, problems):
|
|
diff_counter = {"Low": 0, "Mid": 0, "High": 0}
|
|
for problem in problems:
|
|
diff_counter[
|
|
problem.difficulty if problem.difficulty in diff_counter else "Mid"
|
|
] += 1
|
|
return {
|
|
get_difficulty(k): v
|
|
for k, v in sorted(diff_counter.items(), key=lambda x: x[1], reverse=True)
|
|
}
|
|
|
|
|
|
class AIWeeklyDataAPI(APIView):
|
|
@login_required
|
|
def get(self, request):
|
|
end_iso = request.GET.get("end")
|
|
duration = request.GET.get("duration")
|
|
|
|
user = request.user
|
|
|
|
cache_key = get_cache_key(
|
|
"ai_weekly", user.id, user.class_name or "", end_iso, duration
|
|
)
|
|
cached_result = cache.get(cache_key)
|
|
if cached_result:
|
|
return self.success(cached_result)
|
|
|
|
class_user_ids = get_class_user_ids(user)
|
|
use_class_scope = bool(user.class_name) and len(class_user_ids) > 1
|
|
time_config = self._parse_duration(duration)
|
|
start = datetime.fromisoformat(end_iso) - time_config["total_delta"]
|
|
|
|
weekly_data = []
|
|
for i in range(time_config["show_count"]):
|
|
start = start + time_config["delta"]
|
|
period_end = start + time_config["delta"]
|
|
|
|
submission_count = Submission.objects.filter(
|
|
user_id=user.id, create_time__gte=start, create_time__lte=period_end
|
|
).count()
|
|
|
|
period_data = {
|
|
"unit": time_config["show_unit"],
|
|
"index": time_config["show_count"] - 1 - i,
|
|
"start": start.isoformat(),
|
|
"end": period_end.isoformat(),
|
|
"problem_count": 0,
|
|
"submission_count": submission_count,
|
|
"grade": "",
|
|
}
|
|
|
|
if submission_count > 0:
|
|
user_first_ac, by_problem, problem_ids = get_user_first_ac_submissions(
|
|
user.id,
|
|
start.isoformat(),
|
|
period_end.isoformat(),
|
|
class_user_ids,
|
|
use_class_scope,
|
|
)
|
|
if user_first_ac:
|
|
period_data["problem_count"] = len(problem_ids)
|
|
period_data["grade"] = self._calculate_period_grade(
|
|
user_first_ac, by_problem, user.id
|
|
)
|
|
|
|
weekly_data.append(period_data)
|
|
|
|
cache.set(cache_key, weekly_data, CACHE_TIMEOUT)
|
|
return self.success(weekly_data)
|
|
|
|
def _parse_duration(self, duration):
|
|
unit, count = duration.split(":")
|
|
count = int(count)
|
|
|
|
configs = {
|
|
("months", 2): {
|
|
"show_count": 8,
|
|
"show_unit": "weeks",
|
|
"total_delta": timedelta(weeks=9),
|
|
"delta": timedelta(weeks=1),
|
|
},
|
|
("months", 6): {
|
|
"show_count": 6,
|
|
"show_unit": "months",
|
|
"total_delta": relativedelta(months=7),
|
|
"delta": relativedelta(months=1),
|
|
},
|
|
("years", 1): {
|
|
"show_count": 12,
|
|
"show_unit": "months",
|
|
"total_delta": relativedelta(months=13),
|
|
"delta": relativedelta(months=1),
|
|
},
|
|
}
|
|
|
|
return configs.get(
|
|
(unit, count),
|
|
{
|
|
"show_count": 4,
|
|
"show_unit": "weeks",
|
|
"total_delta": timedelta(weeks=5),
|
|
"delta": timedelta(weeks=1),
|
|
},
|
|
)
|
|
|
|
def _calculate_period_grade(self, user_first_ac, by_problem, user_id):
|
|
grade_count = defaultdict(int)
|
|
for item in user_first_ac:
|
|
ranking_list = by_problem.get(item["problem_id"], [])
|
|
rank = next(
|
|
(
|
|
idx + 1
|
|
for idx, rec in enumerate(ranking_list)
|
|
if rec["user_id"] == user_id
|
|
),
|
|
None,
|
|
)
|
|
grade_count[get_grade(rank, len(ranking_list))] += 1
|
|
return max(grade_count, key=grade_count.get) if grade_count else ""
|
|
|
|
|
|
class AIAnalysisAPI(APIView):
|
|
@login_required
|
|
def post(self, request):
|
|
details = request.data.get("details")
|
|
weekly = request.data.get("weekly")
|
|
|
|
api_key = get_env("AI_KEY")
|
|
|
|
if not api_key:
|
|
return self.error("API_KEY is not set")
|
|
|
|
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
|
|
|
|
system_prompt = "你是一个风趣的编程老师,学生使用判题狗平台进行编程练习。请根据学生提供的详细数据和每周数据,给出用户的学习建议,最后写一句鼓励学生的话。请使用 markdown 格式输出,不要在代码块中输出。"
|
|
user_prompt = f"这段时间内的详细数据: {details}\n每周或每月的数据: {weekly}"
|
|
|
|
analysis_chunks = []
|
|
saved_instance = None
|
|
completed = False
|
|
|
|
def save_analysis():
|
|
nonlocal saved_instance
|
|
if analysis_chunks and not saved_instance:
|
|
saved_instance = AIAnalysis.objects.create(
|
|
user=request.user,
|
|
provider="deepseek",
|
|
model="deepseek-chat",
|
|
data={"details": details, "weekly": weekly},
|
|
system_prompt=system_prompt,
|
|
user_prompt="这段时间内的详细数据,每周或每月的数据。",
|
|
analysis="".join(analysis_chunks).strip(),
|
|
)
|
|
|
|
def stream_generator():
|
|
nonlocal completed
|
|
try:
|
|
stream = client.chat.completions.create(
|
|
model="deepseek-chat",
|
|
messages=[
|
|
{"role": "system", "content": system_prompt},
|
|
{"role": "user", "content": user_prompt},
|
|
],
|
|
stream=True,
|
|
)
|
|
except Exception as exc:
|
|
yield f"data: {json.dumps({'type': 'error', 'message': str(exc)})}\n\n"
|
|
yield "event: end\n\n"
|
|
return
|
|
|
|
yield "event: start\n\n"
|
|
|
|
try:
|
|
for chunk in stream:
|
|
if not chunk.choices:
|
|
continue
|
|
|
|
choice = chunk.choices[0]
|
|
if choice.finish_reason:
|
|
completed = True
|
|
save_analysis()
|
|
yield f"data: {json.dumps({'type': 'done'})}\n\n"
|
|
break
|
|
|
|
content = choice.delta.content
|
|
if content:
|
|
analysis_chunks.append(content)
|
|
yield f"data: {json.dumps({'type': 'delta', 'content': content})}\n\n"
|
|
|
|
except Exception as exc:
|
|
yield f"data: {json.dumps({'type': 'error', 'message': str(exc)})}\n\n"
|
|
finally:
|
|
save_analysis()
|
|
if saved_instance and not completed:
|
|
try:
|
|
saved_instance.delete()
|
|
except Exception:
|
|
pass
|
|
yield "event: end\n\n"
|
|
|
|
response = StreamingHttpResponse(
|
|
streaming_content=stream_generator(),
|
|
content_type="text/event-stream",
|
|
)
|
|
response["Cache-Control"] = "no-cache"
|
|
return response
|
|
|
|
|
|
class AIHeatmapDataAPI(APIView):
|
|
@login_required
|
|
def get(self, request):
|
|
user = request.user
|
|
cache_key = get_cache_key("ai_heatmap", user.id, user.class_name or "")
|
|
cached_result = cache.get(cache_key)
|
|
if cached_result:
|
|
return self.success(cached_result)
|
|
|
|
end = datetime.now()
|
|
start = end - timedelta(days=365)
|
|
|
|
# 使用单次查询获取所有数据,按日期分组统计
|
|
submission_counts = (
|
|
Submission.objects.filter(
|
|
user_id=user.id, create_time__gte=start, create_time__lte=end
|
|
)
|
|
.annotate(date=TruncDate("create_time"))
|
|
.values("date")
|
|
.annotate(count=Count("id"))
|
|
.order_by("date")
|
|
)
|
|
|
|
# 将查询结果转换为字典,便于快速查找
|
|
submission_dict = {item["date"]: item["count"] for item in submission_counts}
|
|
|
|
# 生成365天的热力图数据
|
|
heatmap_data = []
|
|
current_date = start.date()
|
|
for i in range(365):
|
|
day_date = current_date + timedelta(days=i)
|
|
submission_count = submission_dict.get(day_date, 0)
|
|
heatmap_data.append(
|
|
{
|
|
"timestamp": int(datetime.combine(
|
|
day_date, datetime.min.time()
|
|
).timestamp() * 1000),
|
|
"value": submission_count,
|
|
}
|
|
)
|
|
|
|
cache.set(cache_key, heatmap_data, CACHE_TIMEOUT)
|
|
return self.success(heatmap_data)
|