Files
OnlineJudge/flowchart/tasks.py
2025-10-14 01:17:59 +08:00

185 lines
6.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import dramatiq
import json
import time
from openai import OpenAI
from django.db import transaction
from django.utils import timezone
from utils.shortcuts import get_env, DRAMATIQ_WORKER_ARGS
from .models import FlowchartSubmission, FlowchartSubmissionStatus
@dramatiq.actor(**DRAMATIQ_WORKER_ARGS(max_retries=3))
def evaluate_flowchart_task(submission_id):
"""异步AI评分任务"""
try:
submission = FlowchartSubmission.objects.get(id=submission_id)
# 更新状态为处理中
submission.status = FlowchartSubmissionStatus.PROCESSING
submission.save()
start_time = time.time()
# 使用固定评分标准
system_prompt = build_evaluation_prompt(submission.problem)
# 构建用户提示词,包含标准答案对比
user_prompt = f"""
请对以下Mermaid流程图进行评分
学生提交的流程图:
```mermaid
{submission.mermaid_code}
```
标准答案参考:
```mermaid
{submission.problem.mermaid_code}
```
"""
# 如果有流程图提示,添加到提示词中
if submission.problem.flowchart_hint:
user_prompt += f"""
设计提示:{submission.problem.flowchart_hint}
"""
user_prompt += """
请按照评分标准进行详细评估并给出0-100的分数。
"""
# 调用AI进行评分
api_key = get_env("AI_KEY")
if not api_key:
raise Exception("AI_KEY is not set")
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
],
temperature=0.3,
)
ai_response = response.choices[0].message.content
score_data = parse_ai_evaluation_response(ai_response)
processing_time = time.time() - start_time
# 保存评分结果
with transaction.atomic():
submission.ai_score = score_data['score']
submission.ai_grade = score_data['grade']
submission.ai_feedback = score_data['feedback']
submission.ai_suggestions = score_data.get('suggestions', '')
submission.ai_criteria_details = score_data.get('criteria_details', {})
submission.ai_provider = 'deepseek'
submission.ai_model = 'deepseek-chat'
submission.processing_time = processing_time
submission.status = FlowchartSubmissionStatus.COMPLETED
submission.evaluation_time = timezone.now()
submission.save()
# 推送评分完成通知
from utils.websocket import push_flowchart_evaluation_update
push_flowchart_evaluation_update(
submission_id=str(submission.id),
user_id=submission.user_id,
data={
"type": "flowchart_evaluation_completed",
"score": score_data['score'],
"grade": score_data['grade'],
}
)
except Exception as e:
# 处理失败
submission.status = FlowchartSubmissionStatus.FAILED
submission.save()
# 推送错误通知
from utils.websocket import push_flowchart_evaluation_update
push_flowchart_evaluation_update(
submission_id=str(submission.id),
user_id=submission.user_id,
data={
"type": "flowchart_evaluation_failed",
"submission_id": str(submission.id),
"error": str(e)
}
)
raise e
def build_evaluation_prompt(problem):
"""构建AI评分提示词 - 使用固定标准"""
# 使用固定的评分标准
criteria_text = """
- 逻辑正确性 (权重: 1.0, 最高分: 40): 检查流程图的逻辑是否正确,包括条件判断、循环结构等
- 完整性 (权重: 0.8, 最高分: 30): 检查流程图是否包含所有必要的步骤和分支
- 规范性 (权重: 0.6, 最高分: 20): 检查流程图符号使用是否规范,是否符合标准
- 清晰度 (权重: 0.4, 最高分: 10): 评估流程图的整体布局和连线情况不用考虑节点ID是否复杂
"""
return f"""
你是一个专业的编程教学助手负责评估学生提交的Mermaid流程图。
评分标准:
{criteria_text}
评分要求:
1. 仔细分析流程图的逻辑正确性、完整性和清晰度
2. 检查是否涵盖了题目的所有要求
3. 评估流程图的规范性和可读性
4. 给出0-100的分数
5. 提供详细的反馈和改进建议
评分等级:
- S级 (90-100分): 优秀,逻辑清晰,完全符合要求
- A级 (80-89分): 良好,基本符合要求,有少量改进空间
- B级 (70-79分): 及格,基本正确但存在一些问题
- C级 (0-69分): 需要改进,存在明显问题
请以JSON格式返回评分结果
{{
"score": 85,
"grade": "A",
"feedback": "详细的反馈内容",
"suggestions": "改进建议",
"criteria_details": {{
"逻辑正确性": {{"score": 35, "max": 40, "comment": "逻辑基本正确"}},
"完整性": {{"score": 25, "max": 30, "comment": "缺少部分步骤"}},
"规范性": {{"score": 18, "max": 20, "comment": "符号使用规范"}},
"清晰度": {{"score": 8, "max": 10, "comment": "布局清晰"}}
}}
}}
"""
def parse_ai_evaluation_response(ai_response):
"""解析AI评分响应"""
try:
import re
json_match = re.search(r'\{.*\}', ai_response, re.DOTALL)
if json_match:
data = json.loads(json_match.group())
else:
data = {
"score": 60,
"grade": "C",
"feedback": "AI评分解析失败请重新提交",
"suggestions": "",
"criteria_details": {}
}
return data
except Exception:
return {
"score": 60,
"grade": "C",
"feedback": "AI评分解析失败请重新提交",
"suggestions": "",
"criteria_details": {}
}