556 lines
18 KiB
Python
556 lines
18 KiB
Python
from collections import defaultdict
|
|
from datetime import datetime, timedelta
|
|
import hashlib
|
|
import json
|
|
|
|
from dateutil.relativedelta import relativedelta
|
|
from django.core.cache import cache
|
|
from django.db.models import Min
|
|
from django.http import StreamingHttpResponse
|
|
from django.utils import timezone
|
|
from openai import OpenAI
|
|
|
|
from utils.api import APIView
|
|
from utils.shortcuts import get_env
|
|
|
|
from account.models import User
|
|
from problem.models import Problem
|
|
from submission.models import Submission, JudgeStatus
|
|
from account.decorators import login_required
|
|
from ai.models import AIAnalysis
|
|
from textwrap import dedent
|
|
|
|
|
|
# 常量定义
|
|
CACHE_TIMEOUT = 300 # 5分钟缓存
|
|
DIFFICULTY_MAP = {"Low": "简单", "Mid": "中等", "High": "困难"}
|
|
DEFAULT_CLASS_SIZE = 45
|
|
|
|
|
|
def get_cache_key(prefix, *args):
|
|
"""生成缓存键"""
|
|
key_string = f"{prefix}:{'_'.join(map(str, args))}"
|
|
return hashlib.md5(key_string.encode()).hexdigest()
|
|
|
|
|
|
def get_difficulty(difficulty):
|
|
return DIFFICULTY_MAP.get(difficulty, "中等")
|
|
|
|
|
|
def get_grade(rank, submission_count):
|
|
"""
|
|
根据排名和提交人数计算等级
|
|
只有三分之一的人完成,直接给到 S
|
|
"""
|
|
if not rank or rank <= 0 or submission_count <= 0:
|
|
return "C"
|
|
|
|
if submission_count < DEFAULT_CLASS_SIZE // 3:
|
|
return "S"
|
|
|
|
top_percent = round(rank / submission_count * 100)
|
|
if top_percent < 20:
|
|
return "S"
|
|
elif top_percent < 50:
|
|
return "A"
|
|
elif top_percent < 85:
|
|
return "B"
|
|
else:
|
|
return "C"
|
|
|
|
|
|
def get_class_user_ids(user):
|
|
"""获取班级用户ID列表"""
|
|
if not user.class_name:
|
|
return []
|
|
|
|
cache_key = get_cache_key("class_users", user.class_name)
|
|
user_ids = cache.get(cache_key)
|
|
|
|
if user_ids is None:
|
|
user_ids = list(
|
|
User.objects.filter(class_name=user.class_name).values_list("id", flat=True)
|
|
)
|
|
cache.set(cache_key, user_ids, CACHE_TIMEOUT)
|
|
|
|
return user_ids
|
|
|
|
|
|
def get_user_first_ac_submissions(
|
|
user_id, start, end, class_user_ids=None, use_class_scope=False
|
|
):
|
|
"""获取用户首次AC提交记录"""
|
|
base_qs = Submission.objects.filter(
|
|
result=JudgeStatus.ACCEPTED,
|
|
create_time__gte=start,
|
|
create_time__lte=end,
|
|
)
|
|
|
|
if use_class_scope and class_user_ids:
|
|
base_qs = base_qs.filter(user_id__in=class_user_ids)
|
|
|
|
# 获取用户首次AC
|
|
user_first_ac = list(
|
|
base_qs.filter(user_id=user_id)
|
|
.values("problem_id")
|
|
.annotate(first_ac_time=Min("create_time"))
|
|
)
|
|
|
|
if not user_first_ac:
|
|
return [], {}, []
|
|
|
|
# 获取相关题目的所有首次AC记录用于排名
|
|
problem_ids = [item["problem_id"] for item in user_first_ac]
|
|
ranked_first_ac = list(
|
|
base_qs.filter(problem_id__in=problem_ids)
|
|
.values("user_id", "problem_id")
|
|
.annotate(first_ac_time=Min("create_time"))
|
|
)
|
|
|
|
# 按题目分组并排序
|
|
by_problem = defaultdict(list)
|
|
for item in ranked_first_ac:
|
|
by_problem[item["problem_id"]].append(item)
|
|
|
|
for _, arr in by_problem.items():
|
|
arr.sort(key=lambda x: (x["first_ac_time"], x["user_id"]))
|
|
|
|
return user_first_ac, by_problem, problem_ids
|
|
|
|
|
|
class AIDetailDataAPI(APIView):
|
|
@login_required
|
|
def get(self, request):
|
|
start = request.GET.get("start")
|
|
end = request.GET.get("end")
|
|
username = request.GET.get("username")
|
|
|
|
if username:
|
|
try:
|
|
user = User.objects.get(username=username)
|
|
except User.DoesNotExist:
|
|
return self.error("User does not exist")
|
|
else:
|
|
user = request.user
|
|
|
|
# 检查缓存
|
|
cache_key = get_cache_key(
|
|
"ai_detail", user.id, user.class_name or "", start, end
|
|
)
|
|
cached_result = cache.get(cache_key)
|
|
if cached_result:
|
|
return self.success(cached_result)
|
|
|
|
# 获取班级用户ID
|
|
class_user_ids = get_class_user_ids(user)
|
|
use_class_scope = bool(user.class_name) and len(class_user_ids) > 1
|
|
|
|
# 获取用户首次AC记录
|
|
user_first_ac, by_problem, problem_ids = get_user_first_ac_submissions(
|
|
user.id, start, end, class_user_ids, use_class_scope
|
|
)
|
|
|
|
if not user_first_ac:
|
|
result = {
|
|
"user": user.username,
|
|
"class_name": user.class_name,
|
|
"start": start,
|
|
"end": end,
|
|
"solved": [],
|
|
"grade": "",
|
|
"tags": {},
|
|
"difficulty": {},
|
|
"contest_count": 0,
|
|
}
|
|
cache.set(cache_key, result, CACHE_TIMEOUT)
|
|
return self.success(result)
|
|
|
|
# 优化的题目查询 - 一次性获取所有需要的数据
|
|
problems = self._get_problems_with_data(problem_ids)
|
|
|
|
# 构建解题记录
|
|
solved, contest_ids = self._build_solved_records(
|
|
user_first_ac, by_problem, problems, user.id
|
|
)
|
|
|
|
# 计算统计数据
|
|
avg_grade = self._calculate_average_grade(solved)
|
|
tags = self._calculate_top_tags(problems.values())
|
|
difficulty = self._calculate_difficulty_distribution(problems.values())
|
|
|
|
result = {
|
|
"user": user.username,
|
|
"class_name": user.class_name,
|
|
"start": start,
|
|
"end": end,
|
|
"solved": solved,
|
|
"grade": avg_grade,
|
|
"tags": tags,
|
|
"difficulty": difficulty,
|
|
"contest_count": len(set(contest_ids)),
|
|
}
|
|
|
|
# 缓存结果
|
|
cache.set(cache_key, result, CACHE_TIMEOUT)
|
|
return self.success(result)
|
|
|
|
def _get_problems_with_data(self, problem_ids):
|
|
"""优化的题目数据获取"""
|
|
problem_qs = (
|
|
Problem.objects.filter(id__in=problem_ids)
|
|
.select_related("contest")
|
|
.prefetch_related("tags")
|
|
)
|
|
return {p.id: p for p in problem_qs}
|
|
|
|
def _build_solved_records(self, user_first_ac, by_problem, problems, user_id):
|
|
"""构建解题记录"""
|
|
solved = []
|
|
contest_ids = []
|
|
|
|
for item in user_first_ac:
|
|
pid = item["problem_id"]
|
|
ranking_list = by_problem.get(pid, [])
|
|
|
|
# 查找用户排名
|
|
rank = None
|
|
for idx, rec in enumerate(ranking_list):
|
|
if rec["user_id"] == user_id:
|
|
rank = idx + 1
|
|
break
|
|
|
|
problem = problems.get(pid)
|
|
if not problem:
|
|
continue
|
|
|
|
grade = get_grade(rank, len(ranking_list))
|
|
|
|
if problem.contest_id:
|
|
contest_ids.append(problem.contest_id)
|
|
|
|
solved.append(
|
|
{
|
|
"problem": {
|
|
"display_id": problem._id,
|
|
"title": problem.title,
|
|
"contest_id": problem.contest_id,
|
|
"contest_title": getattr(problem.contest, "title", ""),
|
|
},
|
|
"ac_time": timezone.localtime(item["first_ac_time"]).isoformat(),
|
|
"rank": rank,
|
|
"ac_count": len(ranking_list),
|
|
"grade": grade,
|
|
}
|
|
)
|
|
|
|
# 按AC时间排序
|
|
solved.sort(key=lambda x: x["ac_time"])
|
|
return solved, contest_ids
|
|
|
|
def _calculate_average_grade(self, solved):
|
|
"""计算平均等级(出现次数最多的等级)"""
|
|
if not solved:
|
|
return ""
|
|
|
|
grade_count = defaultdict(int)
|
|
for s in solved:
|
|
grade_count[s["grade"]] += 1
|
|
|
|
return max(grade_count, key=grade_count.get)
|
|
|
|
def _calculate_top_tags(self, problems):
|
|
"""计算标签TOP5"""
|
|
tags_counter = defaultdict(int)
|
|
for problem in problems:
|
|
for tag in problem.tags.all():
|
|
if tag.name:
|
|
tags_counter[tag.name] += 1
|
|
|
|
top_tags = sorted(tags_counter.items(), key=lambda x: x[1], reverse=True)[:5]
|
|
return {name: count for name, count in top_tags}
|
|
|
|
def _calculate_difficulty_distribution(self, problems):
|
|
"""计算难度分布"""
|
|
diff_counter = {"Low": 0, "Mid": 0, "High": 0}
|
|
for problem in problems:
|
|
key = problem.difficulty if problem.difficulty in diff_counter else "Mid"
|
|
diff_counter[key] += 1
|
|
|
|
diff_sorted = sorted(diff_counter.items(), key=lambda x: x[1], reverse=True)
|
|
return {get_difficulty(k): v for k, v in diff_sorted}
|
|
|
|
|
|
class AIWeeklyDataAPI(APIView):
|
|
@login_required
|
|
def get(self, request):
|
|
end_iso = request.GET.get("end")
|
|
duration = request.GET.get("duration")
|
|
username = request.GET.get("username")
|
|
|
|
if username:
|
|
try:
|
|
user = User.objects.get(username=username)
|
|
except User.DoesNotExist:
|
|
return self.error("User does not exist")
|
|
else:
|
|
user = request.user
|
|
|
|
# 检查缓存
|
|
cache_key = get_cache_key(
|
|
"ai_weekly", user.id, user.class_name or "", end_iso, duration
|
|
)
|
|
cached_result = cache.get(cache_key)
|
|
if cached_result:
|
|
return self.success(cached_result)
|
|
|
|
# 获取班级用户ID
|
|
class_user_ids = get_class_user_ids(user)
|
|
use_class_scope = bool(user.class_name) and len(class_user_ids) > 1
|
|
|
|
# 解析时间参数
|
|
time_config = self._parse_duration(duration)
|
|
start = datetime.fromisoformat(end_iso) - time_config["total_delta"]
|
|
|
|
weekly_data = []
|
|
for i in range(time_config["show_count"]):
|
|
start = start + time_config["delta"]
|
|
period_end = start + time_config["delta"]
|
|
|
|
period_data = {
|
|
"unit": time_config["show_unit"],
|
|
"index": time_config["show_count"] - 1 - i,
|
|
"start": start.isoformat(),
|
|
"end": period_end.isoformat(),
|
|
"problem_count": 0,
|
|
"submission_count": 0,
|
|
"grade": "",
|
|
}
|
|
|
|
# 获取提交数量
|
|
submission_count = Submission.objects.filter(
|
|
user_id=user.id,
|
|
create_time__gte=start,
|
|
create_time__lte=period_end,
|
|
).count()
|
|
|
|
period_data["submission_count"] = submission_count
|
|
|
|
if submission_count == 0:
|
|
weekly_data.append(period_data)
|
|
continue
|
|
|
|
# 获取AC记录和等级
|
|
user_first_ac, by_problem, problem_ids = get_user_first_ac_submissions(
|
|
user.id,
|
|
start.isoformat(),
|
|
period_end.isoformat(),
|
|
class_user_ids,
|
|
use_class_scope,
|
|
)
|
|
|
|
if user_first_ac:
|
|
period_data["problem_count"] = len(problem_ids)
|
|
period_data["grade"] = self._calculate_period_grade(
|
|
user_first_ac, by_problem, user.id
|
|
)
|
|
|
|
weekly_data.append(period_data)
|
|
|
|
# 缓存结果
|
|
cache.set(cache_key, weekly_data, CACHE_TIMEOUT)
|
|
return self.success(weekly_data)
|
|
|
|
def _parse_duration(self, duration):
|
|
unit, count = duration.split(":")
|
|
count = int(count)
|
|
|
|
# 默认配置
|
|
show_count = 4
|
|
show_unit = "weeks"
|
|
total_delta = timedelta(weeks=show_count + 1)
|
|
delta = timedelta(weeks=1)
|
|
|
|
if unit == "months" and count == 2:
|
|
# 过去八周
|
|
show_count = 8
|
|
total_delta = timedelta(weeks=9)
|
|
elif unit == "months" and count == 6:
|
|
# 过去六个月
|
|
show_count = 6
|
|
show_unit = "months"
|
|
total_delta = relativedelta(months=7)
|
|
delta = relativedelta(months=1)
|
|
elif unit == "years":
|
|
# 过去一年
|
|
show_count = 12
|
|
show_unit = "months"
|
|
total_delta = relativedelta(months=13)
|
|
delta = relativedelta(months=1)
|
|
|
|
return {
|
|
"show_count": show_count,
|
|
"show_unit": show_unit,
|
|
"total_delta": total_delta,
|
|
"delta": delta,
|
|
}
|
|
|
|
def _calculate_period_grade(self, user_first_ac, by_problem, user_id):
|
|
"""计算周期内的等级"""
|
|
grade_count = defaultdict(int)
|
|
|
|
for item in user_first_ac:
|
|
pid = item["problem_id"]
|
|
ranking_list = by_problem.get(pid, [])
|
|
|
|
# 查找用户排名
|
|
rank = None
|
|
for idx, rec in enumerate(ranking_list):
|
|
if rec["user_id"] == user_id:
|
|
rank = idx + 1
|
|
break
|
|
|
|
grade = get_grade(rank, len(ranking_list))
|
|
grade_count[grade] += 1
|
|
|
|
return max(grade_count, key=grade_count.get) if grade_count else ""
|
|
|
|
|
|
class AIAnalysisAPI(APIView):
|
|
@login_required
|
|
def post(self, request):
|
|
user = request.user
|
|
details = request.data.get("details")
|
|
weekly = request.data.get("weekly")
|
|
|
|
api_key = get_env("AI_KEY")
|
|
|
|
if not api_key:
|
|
return self.error("API_KEY is not set")
|
|
|
|
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
|
|
|
|
system_prompt ="""
|
|
你是一个风趣的编程老师,学生使用判题狗平台进行编程练习。
|
|
请根据学生提供的详细数据和每周数据,给出用户的学习建议。
|
|
请使用 markdown 格式输出,不要在代码块中输出。
|
|
最后不要忘记写一句祝福语。
|
|
"""
|
|
|
|
user_prompt = f"""
|
|
这段时间内的详细数据: {details}
|
|
每周或每月的数据: {weekly}
|
|
"""
|
|
|
|
analysis_chunks = []
|
|
saved = False
|
|
save_error = None
|
|
store_error_sent = False
|
|
|
|
def try_save():
|
|
nonlocal saved, save_error
|
|
if saved:
|
|
return
|
|
if not analysis_chunks:
|
|
saved = True
|
|
return
|
|
try:
|
|
AIAnalysis.objects.create(
|
|
user=user,
|
|
data={"details": details, "weekly": weekly},
|
|
system_prompt=dedent(system_prompt).strip(),
|
|
user_prompt="这段时间内的详细数据, 每周或每月的数据",
|
|
analysis="".join(analysis_chunks).strip(),
|
|
)
|
|
except Exception as exc:
|
|
save_error = str(exc)
|
|
finally:
|
|
saved = True
|
|
|
|
def stream_generator():
|
|
nonlocal store_error_sent
|
|
try:
|
|
stream = client.chat.completions.create(
|
|
model="deepseek-chat",
|
|
messages=[
|
|
{
|
|
"role": "system",
|
|
"content": system_prompt,
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": user_prompt,
|
|
},
|
|
],
|
|
stream=True,
|
|
)
|
|
except Exception as exc:
|
|
payload = json.dumps({"type": "error", "message": str(exc)})
|
|
yield f"data: {payload}\n\n"
|
|
yield "event: end\n\n"
|
|
return
|
|
|
|
yield "event: start\n\n"
|
|
|
|
try:
|
|
for chunk in stream:
|
|
if not chunk.choices:
|
|
continue
|
|
|
|
choice = chunk.choices[0]
|
|
finish_reason = getattr(choice, "finish_reason", None)
|
|
|
|
delta = getattr(choice, "delta", None)
|
|
raw_content = getattr(delta, "content", None)
|
|
if raw_content:
|
|
if isinstance(raw_content, list):
|
|
text_content = "".join(
|
|
(
|
|
item.get("text")
|
|
if isinstance(item, dict)
|
|
else getattr(item, "text", None) or ""
|
|
)
|
|
for item in raw_content
|
|
)
|
|
else:
|
|
text_content = str(raw_content)
|
|
|
|
if text_content:
|
|
analysis_chunks.append(text_content)
|
|
payload = json.dumps(
|
|
{"type": "delta", "content": text_content}
|
|
)
|
|
yield f"data: {payload}\n\n"
|
|
|
|
if finish_reason:
|
|
try_save()
|
|
if save_error and not store_error_sent:
|
|
error_payload = json.dumps(
|
|
{"type": "store_error", "message": save_error}
|
|
)
|
|
yield f"data: {error_payload}\n\n"
|
|
store_error_sent = True
|
|
|
|
payload = json.dumps({"type": "done"})
|
|
yield f"data: {payload}\n\n"
|
|
break
|
|
except Exception as exc:
|
|
payload = json.dumps({"type": "error", "message": str(exc)})
|
|
yield f"data: {payload}\n\n"
|
|
finally:
|
|
try_save()
|
|
if save_error and not store_error_sent:
|
|
error_payload = json.dumps(
|
|
{"type": "store_error", "message": save_error}
|
|
)
|
|
yield f"data: {error_payload}\n\n"
|
|
store_error_sent = True
|
|
|
|
yield "event: end\n\n"
|
|
|
|
response = StreamingHttpResponse(
|
|
streaming_content=stream_generator(),
|
|
content_type="text/event-stream",
|
|
)
|
|
response["Cache-Control"] = "no-cache"
|
|
return response
|