from collections import defaultdict from datetime import datetime, timedelta import hashlib import json from dateutil.relativedelta import relativedelta from django.core.cache import cache from django.db.models import Min, Count from django.db.models.functions import TruncDate from django.http import StreamingHttpResponse from django.utils import timezone from openai import OpenAI from utils.api import APIView from utils.shortcuts import get_env from account.models import User from problem.models import Problem from submission.models import Submission, JudgeStatus from account.decorators import login_required from ai.models import AIAnalysis CACHE_TIMEOUT = 300 DIFFICULTY_MAP = {"Low": "简单", "Mid": "中等", "High": "困难"} DEFAULT_CLASS_SIZE = 45 # 评级阈值配置:(百分位上限, 评级) GRADE_THRESHOLDS = [ (10, "S"), # 前10%: S级 - 卓越 (35, "A"), # 前35%: A级 - 优秀 (75, "B"), # 前75%: B级 - 良好 (100, "C"), # 其余: C级 - 及格 ] # 小规模参与惩罚配置:(最小人数, 等级降级映射) SMALL_SCALE_PENALTY = { "threshold": 10, "downgrade": {"S": "A", "A": "B"}, } def get_cache_key(prefix, *args): return hashlib.md5(f"{prefix}:{'_'.join(map(str, args))}".encode()).hexdigest() def get_difficulty(difficulty): return DIFFICULTY_MAP.get(difficulty, "中等") def get_grade(rank, submission_count): """ 计算题目完成评级 评级标准: - S级:前10%,卓越水平(10%的人) - A级:前35%,优秀水平(25%的人) - B级:前75%,良好水平(40%的人) - C级:75%之后,及格水平(25%的人) 特殊规则: - 参与人数少于10人时,S级降为A级,A级降为B级(避免因人少而评级虚高) Args: rank: 用户排名(1表示第一名) submission_count: 总AC人数 Returns: 评级字符串 ("S", "A", "B", "C") """ # 边界检查 if not rank or rank <= 0 or submission_count <= 0: return "C" # 计算百分位(0-100),使用 (rank-1) 使第一名的百分位为0 percentile = (rank - 1) / submission_count * 100 # 根据百分位确定基础评级 base_grade = "C" for threshold, grade in GRADE_THRESHOLDS: if percentile < threshold: base_grade = grade break # 小规模参与惩罚:人数太少时降低评级 if submission_count < SMALL_SCALE_PENALTY["threshold"]: base_grade = SMALL_SCALE_PENALTY["downgrade"].get(base_grade, base_grade) return base_grade def get_class_user_ids(user): if not user.class_name: return [] cache_key = get_cache_key("class_users", user.class_name) user_ids = cache.get(cache_key) if user_ids is None: user_ids = list( User.objects.filter(class_name=user.class_name).values_list("id", flat=True) ) cache.set(cache_key, user_ids, CACHE_TIMEOUT) return user_ids def get_user_first_ac_submissions( user_id, start, end, class_user_ids=None, use_class_scope=False ): base_qs = Submission.objects.filter( result=JudgeStatus.ACCEPTED, create_time__gte=start, create_time__lte=end ) if use_class_scope and class_user_ids: base_qs = base_qs.filter(user_id__in=class_user_ids) user_first_ac = list( base_qs.filter(user_id=user_id) .values("problem_id") .annotate(first_ac_time=Min("create_time")) ) if not user_first_ac: return [], {}, [] problem_ids = [item["problem_id"] for item in user_first_ac] ranked_first_ac = list( base_qs.filter(problem_id__in=problem_ids) .values("user_id", "problem_id") .annotate(first_ac_time=Min("create_time")) ) by_problem = defaultdict(list) for item in ranked_first_ac: by_problem[item["problem_id"]].append(item) for submissions in by_problem.values(): submissions.sort(key=lambda x: (x["first_ac_time"], x["user_id"])) return user_first_ac, by_problem, problem_ids class AIDetailDataAPI(APIView): @login_required def get(self, request): start = request.GET.get("start") end = request.GET.get("end") user = request.user cache_key = get_cache_key( "ai_detail", user.id, user.class_name or "", start, end ) cached_result = cache.get(cache_key) if cached_result: return self.success(cached_result) class_user_ids = get_class_user_ids(user) use_class_scope = bool(user.class_name) and len(class_user_ids) > 1 user_first_ac, by_problem, problem_ids = get_user_first_ac_submissions( user.id, start, end, class_user_ids, use_class_scope ) result = { "user": user.username, "class_name": user.class_name, "start": start, "end": end, "solved": [], "grade": "", "tags": {}, "difficulty": {}, "contest_count": 0, } if user_first_ac: problems = { p.id: p for p in Problem.objects.filter(id__in=problem_ids) .select_related("contest") .prefetch_related("tags") } solved, contest_ids = self._build_solved_records( user_first_ac, by_problem, problems, user.id ) result.update( { "solved": solved, "grade": self._calculate_average_grade(solved), "tags": self._calculate_top_tags(problems.values()), "difficulty": self._calculate_difficulty_distribution( problems.values() ), "contest_count": len(set(contest_ids)), } ) cache.set(cache_key, result, CACHE_TIMEOUT) return self.success(result) def _build_solved_records(self, user_first_ac, by_problem, problems, user_id): solved, contest_ids = [], [] for item in user_first_ac: pid = item["problem_id"] problem = problems.get(pid) if not problem: continue ranking_list = by_problem.get(pid, []) rank = next( ( idx + 1 for idx, rec in enumerate(ranking_list) if rec["user_id"] == user_id ), None, ) if problem.contest_id: contest_ids.append(problem.contest_id) solved.append( { "problem": { "display_id": problem._id, "title": problem.title, "contest_id": problem.contest_id, "contest_title": getattr(problem.contest, "title", ""), }, "ac_time": timezone.localtime(item["first_ac_time"]).isoformat(), "rank": rank, "ac_count": len(ranking_list), "grade": get_grade(rank, len(ranking_list)), "difficulty": get_difficulty(problem.difficulty), } ) return sorted(solved, key=lambda x: x["ac_time"]), contest_ids def _calculate_average_grade(self, solved): if not solved: return "" grade_count = defaultdict(int) for s in solved: grade_count[s["grade"]] += 1 return max(grade_count, key=grade_count.get) def _calculate_top_tags(self, problems): tags_counter = defaultdict(int) for problem in problems: for tag in problem.tags.all(): if tag.name: tags_counter[tag.name] += 1 return dict(sorted(tags_counter.items(), key=lambda x: x[1], reverse=True)[:5]) def _calculate_difficulty_distribution(self, problems): diff_counter = {"Low": 0, "Mid": 0, "High": 0} for problem in problems: diff_counter[ problem.difficulty if problem.difficulty in diff_counter else "Mid" ] += 1 return { get_difficulty(k): v for k, v in sorted(diff_counter.items(), key=lambda x: x[1], reverse=True) } class AIDurationDataAPI(APIView): @login_required def get(self, request): end_iso = request.GET.get("end") duration = request.GET.get("duration") user = request.user cache_key = get_cache_key( "ai_duration", user.id, user.class_name or "", end_iso, duration ) cached_result = cache.get(cache_key) if cached_result: return self.success(cached_result) class_user_ids = get_class_user_ids(user) use_class_scope = bool(user.class_name) and len(class_user_ids) > 1 time_config = self._parse_duration(duration) start = datetime.fromisoformat(end_iso) - time_config["total_delta"] duration_data = [] for i in range(time_config["show_count"]): start = start + time_config["delta"] period_end = start + time_config["delta"] submission_count = Submission.objects.filter( user_id=user.id, create_time__gte=start, create_time__lte=period_end ).count() period_data = { "unit": time_config["show_unit"], "index": time_config["show_count"] - 1 - i, "start": start.isoformat(), "end": period_end.isoformat(), "problem_count": 0, "submission_count": submission_count, "grade": "", } if submission_count > 0: user_first_ac, by_problem, problem_ids = get_user_first_ac_submissions( user.id, start.isoformat(), period_end.isoformat(), class_user_ids, use_class_scope, ) if user_first_ac: period_data["problem_count"] = len(problem_ids) period_data["grade"] = self._calculate_period_grade( user_first_ac, by_problem, user.id ) duration_data.append(period_data) cache.set(cache_key, duration_data, CACHE_TIMEOUT) return self.success(duration_data) def _parse_duration(self, duration): unit, count = duration.split(":") count = int(count) configs = { ("months", 2): { "show_count": 8, "show_unit": "weeks", "total_delta": timedelta(weeks=9), "delta": timedelta(weeks=1), }, ("months", 6): { "show_count": 6, "show_unit": "months", "total_delta": relativedelta(months=7), "delta": relativedelta(months=1), }, ("years", 1): { "show_count": 12, "show_unit": "months", "total_delta": relativedelta(months=13), "delta": relativedelta(months=1), }, } return configs.get( (unit, count), { "show_count": 4, "show_unit": "weeks", "total_delta": timedelta(weeks=5), "delta": timedelta(weeks=1), }, ) def _calculate_period_grade(self, user_first_ac, by_problem, user_id): grade_count = defaultdict(int) for item in user_first_ac: ranking_list = by_problem.get(item["problem_id"], []) rank = next( ( idx + 1 for idx, rec in enumerate(ranking_list) if rec["user_id"] == user_id ), None, ) grade_count[get_grade(rank, len(ranking_list))] += 1 return max(grade_count, key=grade_count.get) if grade_count else "" class AIAnalysisAPI(APIView): @login_required def post(self, request): details = request.data.get("details") duration = request.data.get("duration") api_key = get_env("AI_KEY") if not api_key: return self.error("API_KEY is not set") client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com") system_prompt = "你是一个风趣的编程老师,学生使用判题狗平台进行编程练习。请根据学生提供的详细数据和每周数据,给出用户的学习建议,最后写一句鼓励学生的话。请使用 markdown 格式输出,不要在代码块中输出。" user_prompt = f"这段时间内的详细数据: {details}\n每周或每月的数据: {duration}" analysis_chunks = [] saved_instance = None completed = False def save_analysis(): nonlocal saved_instance if analysis_chunks and not saved_instance: saved_instance = AIAnalysis.objects.create( user=request.user, provider="deepseek", model="deepseek-chat", data={"details": details, "duration": duration}, system_prompt=system_prompt, user_prompt="这段时间内的详细数据,每周或每月的数据。", analysis="".join(analysis_chunks).strip(), ) def stream_generator(): nonlocal completed try: stream = client.chat.completions.create( model="deepseek-chat", messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": user_prompt}, ], stream=True, ) except Exception as exc: yield f"data: {json.dumps({'type': 'error', 'message': str(exc)})}\n\n" yield "event: end\n\n" return yield "event: start\n\n" try: for chunk in stream: if not chunk.choices: continue choice = chunk.choices[0] if choice.finish_reason: completed = True save_analysis() yield f"data: {json.dumps({'type': 'done'})}\n\n" break content = choice.delta.content if content: analysis_chunks.append(content) yield f"data: {json.dumps({'type': 'delta', 'content': content})}\n\n" except Exception as exc: yield f"data: {json.dumps({'type': 'error', 'message': str(exc)})}\n\n" finally: save_analysis() if saved_instance and not completed: try: saved_instance.delete() except Exception: pass yield "event: end\n\n" response = StreamingHttpResponse( streaming_content=stream_generator(), content_type="text/event-stream", ) response["Cache-Control"] = "no-cache" return response class AIHeatmapDataAPI(APIView): @login_required def get(self, request): user = request.user cache_key = get_cache_key("ai_heatmap", user.id, user.class_name or "") cached_result = cache.get(cache_key) if cached_result: return self.success(cached_result) end = datetime.now() start = end - timedelta(days=365) # 使用单次查询获取所有数据,按日期分组统计 submission_counts = ( Submission.objects.filter( user_id=user.id, create_time__gte=start, create_time__lte=end ) .annotate(date=TruncDate("create_time")) .values("date") .annotate(count=Count("id")) .order_by("date") ) # 将查询结果转换为字典,便于快速查找 submission_dict = {item["date"]: item["count"] for item in submission_counts} # 生成365天的热力图数据 heatmap_data = [] current_date = start.date() for i in range(365): day_date = current_date + timedelta(days=i) submission_count = submission_dict.get(day_date, 0) heatmap_data.append( { "timestamp": int(datetime.combine( day_date, datetime.min.time() ).timestamp() * 1000), "value": submission_count, } ) cache.set(cache_key, heatmap_data, CACHE_TIMEOUT) return self.success(heatmap_data)