This commit is contained in:
2025-10-07 00:25:48 +08:00
parent cbe0e297fd
commit 6bb0ff6438
2 changed files with 60 additions and 19 deletions

View File

@@ -3,13 +3,13 @@ from django.urls import path
from ..views.oj import (
AIAnalysisAPI,
AIDetailDataAPI,
AIWeeklyDataAPI,
AIDurationDataAPI,
AIHeatmapDataAPI,
)
urlpatterns = [
path("ai/detail", AIDetailDataAPI.as_view()),
path("ai/weekly", AIWeeklyDataAPI.as_view()),
path("ai/duration", AIDurationDataAPI.as_view()),
path("ai/analysis", AIAnalysisAPI.as_view()),
path("ai/heatmap", AIHeatmapDataAPI.as_view()),
]

View File

@@ -24,7 +24,20 @@ from ai.models import AIAnalysis
CACHE_TIMEOUT = 300
DIFFICULTY_MAP = {"Low": "简单", "Mid": "中等", "High": "困难"}
DEFAULT_CLASS_SIZE = 45
GRADE_THRESHOLDS = [(20, "S"), (50, "A"), (85, "B")]
# 评级阈值配置:(百分位上限, 评级)
GRADE_THRESHOLDS = [
(10, "S"), # 前10%: S级 - 卓越
(35, "A"), # 前35%: A级 - 优秀
(75, "B"), # 前75%: B级 - 良好
(100, "C"), # 其余: C级 - 及格
]
# 小规模参与惩罚配置:(最小人数, 等级降级映射)
SMALL_SCALE_PENALTY = {
"threshold": 10,
"downgrade": {"S": "A", "A": "B"},
}
def get_cache_key(prefix, *args):
@@ -36,16 +49,44 @@ def get_difficulty(difficulty):
def get_grade(rank, submission_count):
"""
计算题目完成评级
评级标准:
- S级前10%卓越水平10%的人)
- A级前35%优秀水平25%的人)
- B级前75%良好水平40%的人)
- C级75%之后及格水平25%的人)
特殊规则:
- 参与人数少于10人时S级降为A级A级降为B级避免因人少而评级虚高
Args:
rank: 用户排名1表示第一名
submission_count: 总AC人数
Returns:
评级字符串 ("S", "A", "B", "C")
"""
# 边界检查
if not rank or rank <= 0 or submission_count <= 0:
return "C"
if submission_count < DEFAULT_CLASS_SIZE // 3:
return "S"
top_percent = round(rank / submission_count * 100)
# 计算百分位0-100使用 (rank-1) 使第一名的百分位为0
percentile = (rank - 1) / submission_count * 100
# 根据百分位确定基础评级
base_grade = "C"
for threshold, grade in GRADE_THRESHOLDS:
if top_percent < threshold:
return grade
return "C"
if percentile < threshold:
base_grade = grade
break
# 小规模参与惩罚:人数太少时降低评级
if submission_count < SMALL_SCALE_PENALTY["threshold"]:
base_grade = SMALL_SCALE_PENALTY["downgrade"].get(base_grade, base_grade)
return base_grade
def get_class_user_ids(user):
@@ -219,7 +260,7 @@ class AIDetailDataAPI(APIView):
}
class AIWeeklyDataAPI(APIView):
class AIDurationDataAPI(APIView):
@login_required
def get(self, request):
end_iso = request.GET.get("end")
@@ -228,7 +269,7 @@ class AIWeeklyDataAPI(APIView):
user = request.user
cache_key = get_cache_key(
"ai_weekly", user.id, user.class_name or "", end_iso, duration
"ai_duration", user.id, user.class_name or "", end_iso, duration
)
cached_result = cache.get(cache_key)
if cached_result:
@@ -239,7 +280,7 @@ class AIWeeklyDataAPI(APIView):
time_config = self._parse_duration(duration)
start = datetime.fromisoformat(end_iso) - time_config["total_delta"]
weekly_data = []
duration_data = []
for i in range(time_config["show_count"]):
start = start + time_config["delta"]
period_end = start + time_config["delta"]
@@ -272,10 +313,10 @@ class AIWeeklyDataAPI(APIView):
user_first_ac, by_problem, user.id
)
weekly_data.append(period_data)
duration_data.append(period_data)
cache.set(cache_key, weekly_data, CACHE_TIMEOUT)
return self.success(weekly_data)
cache.set(cache_key, duration_data, CACHE_TIMEOUT)
return self.success(duration_data)
def _parse_duration(self, duration):
unit, count = duration.split(":")
@@ -332,7 +373,7 @@ class AIAnalysisAPI(APIView):
@login_required
def post(self, request):
details = request.data.get("details")
weekly = request.data.get("weekly")
duration = request.data.get("duration")
api_key = get_env("AI_KEY")
@@ -342,7 +383,7 @@ class AIAnalysisAPI(APIView):
client = OpenAI(api_key=api_key, base_url="https://api.deepseek.com")
system_prompt = "你是一个风趣的编程老师,学生使用判题狗平台进行编程练习。请根据学生提供的详细数据和每周数据,给出用户的学习建议,最后写一句鼓励学生的话。请使用 markdown 格式输出,不要在代码块中输出。"
user_prompt = f"这段时间内的详细数据: {details}\n每周或每月的数据: {weekly}"
user_prompt = f"这段时间内的详细数据: {details}\n每周或每月的数据: {duration}"
analysis_chunks = []
saved_instance = None
@@ -355,7 +396,7 @@ class AIAnalysisAPI(APIView):
user=request.user,
provider="deepseek",
model="deepseek-chat",
data={"details": details, "weekly": weekly},
data={"details": details, "duration": duration},
system_prompt=system_prompt,
user_prompt="这段时间内的详细数据,每周或每月的数据。",
analysis="".join(analysis_chunks).strip(),